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Abstract
In this paper, we use the theory of fractional powers of linear operators to
construct a general (analytic) representation theory for the square-root energy
operator of relativistic quantum theory, which is valid for all values of the
spin. We focus on the spin 1/2 case, considering a few simple yet solvable and
physically interesting cases, in order to understand how to interpret the operator.
Our general representation is uniquely determined by the Green’s function for
the corresponding Schrödinger equation. We find that, in general, the operator
has a representation as a nonlocal composite of (at least) three singularities.
In the standard interpretation, the particle component has two negative parts
and one (hard core) positive part, while the antiparticle component has two
positive parts and one (hard core) negative part. This effect is confined within
a Compton wavelength such that, at the point of singularity, they cancel each
other providing a finite result. Furthermore, the operator looks like the identity
outside a few Compton wavelengths (cut-off). To our knowledge, this is the
first example of a physically relevant operator with these properties. When
the magnetic field is constant, we obtain an additional singularity, which could
be interpreted as particle absorption and emission. The physical picture that
emerges is that, in addition to the confined singularities and the additional
attractive (repulsive) term, the effective mass of the composite acquires an
oscillatory behaviour. We also derive an alternative relationship between the
Dirac equation (with minimal coupling) and the square-root equation that is
somewhat closer than the one obtained via the Foldy–Wouthuysen method,
in that there is no change in the wavefunction. This is accomplished by
considering the scalar potential to be a part of the mass. This approach leads
to a new Klein–Gordon equation and a new square-root equation, both of
which can have the same eigenfunctions and (related) eigenvalues as the Dirac
equation. Finally, we develop a perturbation theory that allows us to extend the
range of our theory to include suitable spacetime-dependent potentials.
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1. Background

1.1. Introduction

In the transition from nonrelativistic to relativistic quantum theory, the Hamiltonian

H = [p − (e/c)A]2

2m
+ V

is replaced by the square-root equation:

H =
√

c2[p − (e/c)A]2 + m2c4 + V.

It is quite natural to expect that the first choice for a relativistic wave equation would be

ih̄
∂ψ

∂t
= [√

c2[p − (e/c)A]2 + m2c4 + V
]
ψ,

where p = −ih̄∇. However, no one knew how to directly relate this equation to physically
important problems. Furthermore, this equation is nonlocal, meaning, in the terminology of
the times (1920–1930), that it is represented by a power series in the momentum operator.
Historically, Schrödinger [1], Gordon [2], Klein [3] and others [4–6] attempted to circumvent
this problem by starting with the relationship

(H − V )2 = c2
(

p − e

c
A
)2

+ m2c4,

which led to the Klein–Gordon equation. At that time, the hope was to construct a relativistic
quantum theory that would provide a natural extension of the nonrelativistic case. However,
the problems with the Klein–Gordon equation were so great that many investigators became
frustrated and it was dropped from serious consideration for a few years.

Dirac [7] argued that the proper equation should be first order in both the space and time
variables in order to be a true relativistic wave equation, and this led to the well-known Dirac
equation.

1.2. Purpose

In a survey article on relativistic wave equations, Foldy [8] pointed out that, in the absence of
interaction, the above equation ‘gives a perfectly good wave equation for the description of a
(spin 0) free particle’. Foldy [9] had shown in an earlier paper that the square-root form

H = β
√

c2p2 + m2c4,

provides a canonical representation for particles of all finite spin. However, when A is nonzero,
the noncommutativity of p and A ‘appeared’ to make it impossible to give an unambiguous
meaning to the radical operator.

In this paper, we take a new look at this equation and the general problem of its relationship
with the Klein–Gordon equation. First, we investigate the extent that the noncommutativity
of p and A affect our ability to give an unambiguous meaning to the square-root operator.
We show that a unique analytic representation is well defined for suitable time-independent
A and m, provided we can solve a corresponding equation of the Schrödinger type. We
then investigate a few simple cases of solvable models in order to get a feel for the physical
interpretation of this operator. Finally, motivated by previous work [10], we show that the
relationship of the square-root operator equation with the Klein–Gordon equation depends
explicitly on the Minkowski postulate. Dropping this postulate, we derive another Klein–
Gordon-type equation that does not depend on this postulate and gives a direct relationship of
the square-root equation with the Dirac equation (without the use of a unitary transformation).
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To begin with, we start with the equation

S[ψ] = Hsψ =
{

β

√
c2
(

p − e

c
A
)2

− eh̄cΣ · B + m2c4

}
ψ, (1a)

where β and Σ are the Dirac matrices: β = [I 0
0 −I

]
, Σ = [

σ 0
0 σ

]
; I and σ are the identity and

Pauli matrices, respectively. In section 2, we construct an analytic representation for (1a),
under special conditions. After exploring simplifications in sections 3–5, we argue that the
special conditions are physically reasonable. In section 6, we construct the general solution
to the equation

ih̄
∂

∂t
ψ =

{
β

√
c2
(

p − e

c
A
)2

− eh̄cΣ · B + m2c4

}
ψ. (1b)

In section 7, we show that if we treat the potential energy as a part of the mass, there is
an alternate connection between the Dirac and square-root equations. In the conclusion, we
summarize our results and discuss open problems. In the appendix, we summarize the basic
theory of the semigroups of operators and fractional powers of closed linear operators so that
the paper is self-contained.

2. General representation ansatz

In this section, we construct a general analytic representation for equation (1a). To make our
approach clear, set G = −(

p− e
c
A
)2

and ω2 = m2c2− eh̄
c
Σ · B. Except for time independence,

we leave the form of the vector potential and the mass unspecified. We assume that −G + ω2

satisfies the conditions required to be a generator of a unitary group (self-adjoint). Using the
above notation, we can write (1a) as

S[ψ] = {
cβ

√
−G + ω2

}
ψ. (2)

Using the analytic theory of fractional powers of closed linear operators (see the appendix,
equation (A.8)), it can be shown that, for generators of unitary groups, we can write (2) as
(using

√
F = (1/

√
F)F)

S[ψ] = cβ

π

∫ ∞

0
[(λ + ω) − G]−1(−G + ω2)ψ

dλ√
γ

, (3)

where [(λ+ω2)−G](−1) is the resolvent associated with the operator (G−ω2). The resolvent
can be computed directly if we can find the fundamental solution to the equation

∂Q(x, y; t)/∂t + (G − ω2)Q(x, y; t) = δ(x − y). (4)

It is shown in Schulman [11] that the equation

ih̄∂Q̄(x, y; t)/∂t +

(
1

2M
G − V

)
Q̄(x, y; t) = δ(x − y) (5)

has the general (infinitesimal) solution

Q̄(x, y; t)=
(

M

2π ih̄t

)3/2

exp

{
it

h̄

[
M

2

(
x − y

t

)2

− V (y)

]
+

ie

h̄c
(x − y) · A

[
1

2
(x + y)

]}
,

(6)
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provided that A and m are time independent. Note that we used the midpoint evaluation in the
last term of equation (6)

(
A
[

1
2 (x + y)

])
. If we set ω2/ih̄ = V and M = ih̄/2, we get that

Q(x, t; y, 0) =
∫ x(t)=x

x(0)=y
DWx,t [x(s)] exp

{∫ t

0
V [x(s)] ds +

ie

h̄c

∫ x

y
A[x(s)] · dx(s)

}
(7)

solves (4), where∫ x(t)=x

x(0)=y
DWx,t [x(s)] =

∫ x(t)=x

x(0)=y
D[x(s)] exp

{
−1

4

∫ t

0

∣∣∣∣dx(s)

ds

∣∣∣∣
2

ds

}
= lim

N→∞

[
1

4πε(N)

]nN/2

×
∫

Rn

N∏
k=1

dxj exp


−

N∑
j=1

[
1

4ε(N)
(xj − xj−1)

2

]
 ,

and ε(N) = t/N .
We now assume that we can write

∫ x
y A[x(s)]·dx(s) = Ā · (x−y) and

∫ t

0 V [x(s)] ds = V̄ t

(V̄ t = ω2t/h̄2) over the region of interest. (We will discuss the physical meaning of this
assumption later.) Under these conditions, using (7), we can compute [(λ + ω2) − G]−1 from

[(λ + ω2) − G]−1f (x) =
∫ ∞

0
e−λt

[∫
R3

Q(x, t; y, 0)f (y) dy
]

dt. (8)

If we interchange the order of integration in (8) and use (7), we get that

[(λ + ω2) − G]−1f (x) =
∫

R3
exp

{ ie

h̄c
Ā · (x − y)

}

×
{∫ ∞

0
exp

[
− (x − y)2

4t
− ω2t

h̄2 − λt

]
dt

(4πt)3/2

}
f (y) dy. (9a)

Using a table of Laplace transforms [12], the inner integral can be computed to get∫ ∞

0
exp

[
− (x − y)2

4t
− ω2t

h̄2 − λt

]
dt

(4πt)3/2
= 1

4π

exp
[−√

(λ + µ2)‖x − y‖]
‖x − y‖ , (9b)

where µ2 = (ω2/h̄2). Equation (3) now becomes

S[ψ](x) = cβ

4π2

∫ ∞

0

{∫
R3

exp
{ ie

h̄c
Ā · (x − y)

}

×exp
[−√

(λ + µ2)‖x − y‖]
‖x − y‖ (−G + ω2)ψ(y) dy

}
dλ√

λ
. (10)

Once again, we interchange the order of integration in (10) and perform the computations to
get (K1[z] is the modified Bessel function of the third kind and first order)∫ ∞

0

{
exp

[−√
(λ + µ2)‖x − y‖]
‖x − y‖

}
dλ√

λ
= 4µ	

(
3
2

)
π1/2

K1[µ‖x − y‖]

‖x − y‖ . (11)

Thus, if we set a = e
h̄c

A and ā = e
h̄c

Ā, we get

S[ψ](x) = cβ

2π2

∫
R3

exp[iā · (x − y)]
µK1[µ‖x − y‖]

‖x − y‖ (−G + ω2)ψ(y) dy. (12)

Now, −G + ω2 = h̄2(−
 + 2ia · ∇ + i∇ · a + a2 + µ2), so that (12) becomes

S[ψ](x) = h̄2cβ

2π2

∫
R3

exp(iā · (x − y))
µK1[µ‖x − y‖]

‖x − y‖
× (−
 + 2ia · ∇ + i∇ · a + a2 + µ2)ψ(y) dy. (13)
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Before continuing, we recall a few standard results that will be used to compute (13).
We assume that f, g ∈ H2

0(D),D ⊆ R3, and the boundary ∂D is smooth. Here H2
0(D) is the

space of functions with second distributional derivatives in L2(D) that vanish on ∂D. From
the divergence theorem we have (ν is the outward normal on ∂D)∫

D
fgyi

dy =
∫

∂D
(fg)νi dS −

∫
D

gfyi
dy, (14)

∫
D

f (a · ∇)g dy =
∫

∂D
(fg)(a · ν) dS −

∫
D

g(a · ∇)f dy. (15)

We will also need Green’s identity in the form∫
D

f 
g dy =
∫

∂D
fgν dS −

∫
∂D

gfν dS +
∫

D
g
f dy.

Let us now consider a ball Bρ(x) of radius ρ about x so that R3 = R3
ρ ∪ Bρ(x), where

R3
ρ = (R3\Bρ(x)), so that ∂R3

ρ = (∂R3\∂Bρ(x)). Let ν be the outward normal on ∂R3
ρ . It

follows that −ν is the outward normal on Bρ(x) and y = x − νρ on ∂Bρ(x). Using (14) and

(15), we can write (13) as ((u = µ‖x − y‖) and T[ψ](x) = 2π2β

h̄2c
S[ψ](x))

T[ψ]ρ =
∫

R3
ρ

exp(iā · (x − y))µ2[K1(u)/u](−
 + 2ia · ∇ + i∇ · a + a2 + µ2)ψ dy

=
∫

R3
ρ

exp(iā · (x − y))µ2[K1(u)/u](µ2 + i∇ · a + a2)ψ dy

− 2i
∫

R3
ρ

a · ∇{exp(iā · (x − y))µ2[K1(u)/u]}ψ dy

−
∫

R3
ρ


{exp(iā · (x − y))µ2[K1(u)/u]}ψ dy

−
∫

∂R3
ρ

{exp(iā · (x − y))µ2[K1(u)/u]}−νψ dS

+
∫

∂R3
ρ

{exp(iā · (x − y))µ2[K1(u)/u]}ψ−ν dS

+ 2i
∫

∂R3
ρ

exp(iā · (x − y))µ2[K1(u)/u]ψ(a · ν) dS. (16)

It is clear that the surface integrals vanish on ∂R3, so we need only consider them on ∂Bρ(x).
It is easy to check that the integrands in the last two terms are continuous so that they vanish
as ρ → 0. Easy analysis shows that the only possible nonvanishing part of the remaining
surface term is (dS = ρ2 sin θ dθ dφ = u2/µ2 d�)∫

∂Bρ

exp[iā · νρ]u2[K1(u)/u]−νψ d�, (17)

where, on ∂Bρ(x), ‖x − y‖ = ρ, (xi − yi) = νi and u = µρ. We also have[
K1(u)

u

]
−ν

= −ν · ∇
[

K1(u)

u

]
= −

3∑
i=1

νi

d

du

[
K1(u)

u

]
∂u

∂yi

,

and
d

du

[
K1(u)

u

]
= −K2(u)

u
,

∂u

∂yi

= ∂µ

∂yi

‖x − y‖ − µ
(xi − yi)

‖x − y‖ ,
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so that [
K1(u)

u

]
−ν

= K2(u)

u
[ρν · ∇µ − µ]. (18)

Assuming that µ ∈ H2
0(R

3), it is easy to see that u2[K2(u)/u]ν ·∇µρ is continuous as ρ → 0,
so that the surface integral of this term vanishes. Thus, we only need consider

lim
ρ→0

∫
‖x−y‖=ρ

exp{iā[x − νρ/2] · νρ}ψ(x − νρ)uK2(u) d�. (19)

The first three terms in the above integral are continuous as ρ → 0. However, as u = µρ

and K2(u) ≈ 1/u2 near zero, we see that because of the last term, the integral diverges like
1/u. This is the first of several divergent integrals that arise in the analytic representation of
the square-root operator. For later use, we represent it as

4π

∫
R3

exp(iā · (x − y))µ3 K2[µ‖x − y‖]

µ‖x − y‖ δ(x − y)ψ(y) dy. (20)

In the limit as ρ → 0, equation (16) becomes

T[ψ] =
∫

R3
(µ2 + i∇ · a + a2) exp(iā · (x − y))µ2 K1[µ‖x − y‖]

µ‖x − y‖ ψ dy

− 2i
∫

R3
a · ∇

{
exp(iā · (x − y))µ2 K1[µ‖x − y‖]

µ‖x − y‖
}

ψ dy

−
∫

R3



{
exp(iā · (x − y))µ2 K1[µ‖x − y‖]

µ‖x − y‖
}

ψ dy

+
∫

R3
exp(iā · (x − y))µ3 K2[µ‖x − y‖]

µ‖x − y‖ 4πδ(x − y)ψ dy. (21)

The above expression can be further refined after computation of the middle two terms.
The calculations are long but straightforward, so we provide intermediate steps omitting
details. Using 
(fg) = f 
g + f 
g + 2∇f · ∇g, the third term becomes∫

R3



{
exp(iā · (x − y))µ

K1[µ‖x − y‖]

‖x − y‖
}

ψ dy

=
∫

R3

{exp(iā · (x − y))µ2}K1[µ‖x − y‖]

µ‖x − y‖ ψ dy

+
∫

R3
exp(iā · (x − y))µ2


{
K1[µ‖x − y‖]

µ‖x − y‖
}

ψ dy

+ 2
∫

R3
∇{exp(iā · (x − y))µ2} · ∇

{
K1[µ‖x − y‖]

µ‖x − y‖
}

ψ dy. (22)

For further refinement, we need the following (u = µ‖x − y‖, w = exp(iā · (x − y))µ2):

∇[K1(u)/u] = [K3(u)/u](∇u)2 − [K2(u)/u](
u), ∇[K1(u)/u] = −∇u[K2(u)/u],

∇u = (‖x − y‖∇µ − µ[(x − y)/‖x − y‖]) = u

(∇µ

µ

)
− µ2 (x − y)

u
, (23)

(∇u)2 = µ2 + ‖x − y‖2(∇µ)2 − 2µ[∇µ · (x − y)],


u = ‖x − y‖
µ − 2[∇µ · (x − y) − µ]
/‖x − y‖.

K3[u]/u = K1[u]/u + 4K2[u]/u2, K2[u]/u = K0[u]/u + 2K1[u]/u2. (24)
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Using (23), we can compute (22) and the second term of (21) to get (z = x − y)∫
R3




{
w

K1[u]

u

}
ψ dy =

∫
R3


w
K1[u]

u
ψ dy

+
∫

R3
w

[
µ2 + u2 (∇µ)2

µ2
− 2[∇µ · u]

]
K3[u]

u
ψ dy

−
∫

R3
w

[
u


µ

µ
− 2

[∇µ · u − µ2]

u

]
K2[u]

u
ψ

− 2
∫

R3

(
u

(∇w · ∇µ

µ

)
− µ

∇w · u
u

)
K2[u]

u
ψ dy, (25)

∫
R3

a · ∇
{
w

K1[u]

u

}
ψ dy = +

∫
R3

(a · ∇w)
K1[u]

u
ψ dy

−
∫

R3
w

{
u

(a · ∇µ)

µ
− µ

a · u)

u

}
K2[u]

u
ψ dy. (26)

In order to complete our representation for the square-root operator, we need to compute
∇w and 
w:

∇w = w

{
2
∇µ

µ
+ i[∇(ā · z)]

}
= w

{
2
∇µ

µ
+ i[(z · ∇) · ā] − iā

}
,

(27)


w = w

{
2

[

µ

µ
+

(∇µ

µ

)2
]

+ 4i

[
1

µ
∇(ā · z) · ∇µ

]
+ i[
(ā · z)] − [∇(ā · z)]2

}
.

It follows that

z · ∇w = w

{
2

z · ∇µ

µ
+ i[(z · ∇)ā] · z − iz · ā

}
,

(28)(∇w · ∇µ

µ

)
= w

{
2
(∇µ)2

µ2
+ i[(z · ∇)ā] ·

(∇µ

µ

)
− iā ·

(∇µ

µ

)}
,

and

S[ψ] = h̄2µ2cβ

2π2

{∫
R3

(µ2 + i∇ · a + a2) exp(iā · z)
K1[µ‖z‖]

µ‖z‖ ψ dy

+
∫

R3
exp(iā · z)µ3 K2[µ‖z‖]

µ‖z‖ 4πδ(z)ψ dy − 2i
∫

R3
(ā · ∇w)

K1[µ‖z‖]

µ‖z‖ ψ dy

+ 2i
∫

R3
w

{
‖z‖(a · ∇µ) − µ

a · z)
‖z‖

}
K2[µ‖z‖]

µ‖z‖ ψ dy −
∫

R3

w

K1[µ‖z‖]

µ‖z‖ ψ dy

−
∫

R3
w[µ2 + ‖z‖2(∇µ)2 − 2µ[∇µ · z]]

K3[µ‖z‖]

µ‖z‖ ψ dy

+
∫

R3
w

[
‖z‖
µ − 2

[∇µ · z − µ]

‖z‖
]

K2[µ‖z‖]

µ‖z‖ ψ dy

+ 2
∫

R3

(
‖z‖(∇w · ∇µ) − µ

∇w · z
‖z‖

)
K2[µ‖z‖]

µ‖z‖ ψ dy

}
. (29)

Equation (29) allows us to explore the physical consequences for a number of possible
combinations of (time-independent) vector potentials. However, we must first establish the
conditions under which our initial assumptions can be expected to hold.
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3. The free particle case (µ constant and A = 0)

The free particle case is the simplest (µ constant and A = 0). In this case, (29) reduces to

S[ψ](x) = −µ2h̄2cβ

π2

∫
R3

[
1

‖x − y‖ − 2πδ(x − y)

]
K2[µ‖x − y‖ ]

‖x − y‖ ψ(y) dy. (30)

Using K2[u]/u = K0[u]/u + 2K1[u]/u2, we see that (30) has the representation

S[ψ](x) = −µ2h̄2cβ

π2

∫
R3

[
1

‖x − y‖ − 2πδ(x − y)

]

×
{

K0[µ‖x − y‖ ]

‖x − y‖ +
2K1[µ‖x − y‖ ]

µ ‖x − y‖2

}
ψ(y) dy. (31)

Gill [10] first derived equation (31) using the method of fractional powers of closed linear
operators. In order to identify a possible physical interpretation for (31), it will be helpful to
review some properties of the Bessel functions K0[u],K1/2[u]/u1/2 and K1[u]/u. If x 
= y,
the effective kernel in (31) is

K0[µ‖x − y‖]

‖x − y‖2
+

2K1[µ‖x − y‖]

µ ‖x − y‖3
. (32)

(Note that the integral of ‖x − y‖−2 is finite over R3.) We follow Gradshteyn and Ryzhik [12].
For 0 < u � 1, we have

K1[u]/u = c1[1 + θ1(u)]u−2

K1/2[u]/u1/2 = [
√

π/2]u−1

K0[u] = c0[1 + θ0(u)] ln u−1


 , (33a)

where θ0(u) ↓ 0, θ1(u) ↓ 0, u ↓ 0. On the other hand, for u  1, we have

K1[u]

u
= c1[1 + θ ′

1(u)]
exp{−u}

u3/2

K1/2[u]/u1/2 = [
√

π/2]
exp{−u}

u

K0[u] = c0[1 + θ ′
0(u)]

exp{−u}
u1/2




. (33b)

In this case, the functions θ ′
0(u),θ ′

1(u) converge ↓0 as u ↑ ∞.
Recall that g2 exp{−u}/u is the well-known Yukawa potential [13], conjectured in 1935

in order to account for the short range of the nuclear interaction that was expected to have
massive exchange particles (where g represents the ‘charge’ of the exchange field). Yukawa
assumed that the range of the exchange field was 1/µ ∼= 1.4 fermi, which led to a mass value
of about 170 times that of the electron. Anderson and Neddermeyer [14] discovered what was
believed to be Yukawa’s meson with a mass of 207 times that of an electron in 1935. However,
this particle interacted so weakly with nuclei and had such a long lifetime, it was rejected as a
participant in the nuclear interaction. Finally, in 1947, Lattes et al [15] identified the π -meson
(pion) with all the expected properties.

Looking at equation (33a) in the strength of singularity sense, we see that when 0 < u � 1,

K1[u]/u > K1[u]/u1/2  K0[u]. (34)

The K0[u] term is the weakest possible singularity in limu→0{uεK0[u]} = 0, ε > 0. (In fact, it
is an integrable singularity.) On the other hand, the K1[u]/u term has the strongest singularity
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(as it diverges like 1/u2), while the Yukawa term is halfway between them (diverges like 1/u).
From equation (33b) we see that for large u, inequality (34) is reversed so that

K0[u] > K1/2[u]/u1/2 > K1[u]/u. (35a)

Although all three terms in (35a) have an exponential cut-off, the K0[u] term has the longest
range (see (33b)). If we include the −µ2 term in equation (32), it becomes

−µ3 K0[µ‖x − y‖]

‖x − y‖2
− 2µ2 K1[µ‖x − y‖]

‖x − y‖3
. (36)

Thus, −µ3K0[u] has an extra factor of µ, compared to the K1[u]/u term, giving a value of
5 × 1013 cm−1, assuming that the mass is that of an electron. Hence, although this term is the
weakest of all possible singularities near x = y, it is asymptotically stronger by a factor of at
least 109 in the asymptotic region. Thus, for u  1, we can replace equation (35a) by

K0[u]  K1/2[u]/u1/2 > K1[u]/u. (35b)

3.1. Discussion

Equation (31) is the first known example of a physically relevant operator with an analytic
representation as a composite of three singularities. In the standard interpretation, the particle
component has two negative and one (hard core) positive part, while the antiparticle component
has two positive and one (hard core) negative part. This effect is confined within a Compton
wavelength such that, at the point of singularity, the terms cancel each other providing the
action of a well-defined operator. Furthermore, the operator looks (almost) like the identity
outside a Compton wavelength, but has a residual instantaneous connection with all the
particles in the universe at each point in time (spatially nonlocal). This suggests that the
square-root operator might represent the inside of an extended object. We will return to this
discussion after we study a few other exact representations.

4. The constant case (A and µ constant)

Since a tractable solution for equation (2) is difficult to find, it is of some comfort that a number
of exact simple solutions are possible. These provide a wealth of physical insight into the
nature of this operator during interaction. When A and µ are constant, we get another solvable
problem, which is still of physical interest. In this case, since ∇ · A = 0 and B = ∇ × A = 0,
equation (29) becomes (ā = a)

S[ψ](x) = −µ2h̄2cβ

π2

∫
R3

exp(ia · (x − y))

[
1

‖x − y‖ − 2πδ(x − y)

]
K2[µ‖x − y‖]

‖x − y‖ ψ(y) dy.

(37)

Thus, when A and µ = mc/h̄ are both constant, we get a multiplicative exponential factor.
This solution appears to be marginally more interesting than the free field case.

5. The constant field case (µ, B constant)

In this case, assuming a constant magnetic field B and constant mass, we get another solution.
With A(z) = 1

2 z×B and
[

1
2 z × B

] · dz = [
1
2 dz × z

] · B = 1
2‖dz‖ ‖z‖λ, where λ = ‖B‖ cos θ̂

and θ̂ is the average of the angle between dz × z and B from x to y. If we compute the integral
on the right-hand side of equation (7), we get

∫ x
y

[
1
2 z × B

] · dz = λ
4 ‖x − y‖‖x + y‖. It is easy
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to see that ∇ · a = 0 (recall a = a(y) = e
h̄c

A(y)) and a(y) · y = 0. If we define ā = χ(x + y),
such that ā · (x − y) = eλ

4h̄c
‖x − y‖ ‖x + y‖, equation (29) reduces to

S[ψ] = h̄2cβ

2π2

{∫
R3

(a2 − 6iχ + 4χ2‖x‖2)µ exp(iā · (x − y))
K1[µ‖x − y‖]

‖x − y‖ ψ dy

+
∫

R3
exp(iā · (x − y))µ2 K2[µ‖x − y‖]

‖x − y‖ 4πδ(x − y)ψ dy

− 2
∫

R3
µ2 exp(iā · (x − y))[1 + iχ‖x − y‖2

− i(a − ā) · (x − y)]
K2[µ‖x − y‖]

‖x − y‖2
ψ dy

}
. (38a)

If we set F = χ‖x − y‖2 − (a − ā) · (x − y), we can write (38a) as

S[ψ] = −h̄2µ2cβ

π2

{∫
R3

exp(iā · (x − y))

×
[

1

‖x − y‖ − 2πδ(x − y)

1 + iF

]
[1 + iF ]

K2[µ‖x − y‖]

‖x − y‖ ψ dy

}

+
h̄2µcβ

2π2

∫
R3

exp(iā · (x − y))(a2 − 6iχ + 4χ2‖x‖2)
K1[µ‖x − y‖]

‖x − y‖ ψ dy. (38b)

Thus, in this case, we get two extra terms and a slightly different multiplicative exponential
factor. The first term is purely imaginary and singular at x = y like 1/‖x − y‖ (like the
Yukawa term). We interpreted this term as representing particle absorption and emission. The
second term has a real and imaginary component, the real part is repulsive and the term is
nonsingular. In addition, the effective mass µ is constant but matrix valued with complex
components. In this case, µ2 = m2c2/h̄2 − e

h̄c
Σ · B, so with

Σ =
(

σ 0
0 σ

)
; σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
, (39)

µ2 =
[ (

m2c2

h̄2 − e
h̄c

B3
)
I2

ie
h̄c

(B2 − iB1)I2

−ie
h̄c

(B2 − iB1)I2
(

m2c2

h̄2 + e
h̄c

B3
)
I2

]
. (40)

We can rewrite µ as µ = U |µ|, where U is a isometric operator (a restricted unitary operator
in C [4], the four-dimensional complex space), |µ| = [µ∗µ]1/2, where µ∗ is the Hermitian
conjugate of µ and the square root is computed using elementary spectral theory.

From properties of Bessel functions we know that, for nonintegral ν, we can represent
Kν[u] as

(2/π)Kν[u] = I−ν(u) − Iν(u)

sin πν
= exp(i/2(πν))J−ν(iu) − exp(−i/2(πν))Jν(iu)

sin πν
. (41)

In the limit as ν approaches an integer, equation (41) takes the indeterminate form 0/0, and is
defined via L’Hôpital’s rule. However, for our purposes, we assume that ν is close to an integer
and u = u1 + iu2, u2 
= 0. It follows that Kν[u] acquires some of the oscillatory behaviour of
Jν[z]. Thus, we can interpret equation (40) as representing a pulsating mass (extended object
of variable mass) with mean value (h̄/c)‖µ‖. If B is very large, we see that the effective mass
can also be large. However, the operator still looks (almost) like the identity outside a few
Compton wavelengths.
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6. General solution

In this section, we construct the solution of equation (1b) for the constant A case. The solution
for the other examples will be discussed in a future paper on the application of these results
to the canonical proper time formulation of relativistic quantum mechanics. First, rewrite
equation (7) as

Q(x, y; t) =
(

1

4πt

)3/2

exp

{
− (x − y)2

4t
− µ2t +

ie

h̄c
(x − y) · A

}
. (42)

Now, using the theory of fractional powers, we note that if T[t, 0] is the semigroup associated
with −G + ω2, then the semigroup associated with

√−G + ω2 is given by (appendix,
equations (A.7), (A.10))

T1/2[t, 0]ϕ(x) =
∫ ∞

0

{∫
R3

(
1

4πs

)3/2

exp

{(
−‖x − y‖2

4s
− µ2s

)

+
ie

2h̄c
(x − y) · A

}
ϕ(y) dy

}{(
ct√
4π

)
1

s3/2
exp

(
− (ct)2

4s

)}
ds. (43)

From a table of Laplace transforms, we get∫ ∞

0
exp

(
−a

s
− ps

) ds

s3
= 2

(p

a

)
K2[2(ap)1/2]. (44)

With a = [‖x − y‖2 + c2t2]/4, p = µ2, we can interchange the order of integration to get

T1/2[t, 0]ϕ(x) = ct

4π2

∫
R3

exp
{ ie

2h̄c
(x − y) · A

} 2µ2K2[µ(‖x − y‖2 + c2t2)1/2]

[‖x − y‖2 + c2t2]
ϕ(y) dy.

(45)

We now use the fact that T1/2[t, 0] has a holomorphic extension into the complex plane so that
we may compute the limit as t → it . Setting U[t, 0] = limε→0 βT1/2[(i + ε)t, 0], we define
(note that exp{βit

√−G + ω2} = β exp{it√−G + ω2})

Z[µ(c2t2 − ‖x − y‖2)1/2] = ctβ

4π




−H
(1)
2 [µ(c2t2−‖x−y‖2)1/2]

[c2t2−‖x−y‖2] , ct < −‖x‖,
−2iK2[µ(‖x−y‖2−c2t2)1/2]

π[‖x−y‖2−c2t2] , c|t | < ‖x‖,
H

(2)
2 [µ(c2t2−‖x−y‖2)1/2]

[c2t2−‖x−y‖2] , ct > ‖x‖,
(46a)

where H
(1)
2 , H

(2)
2 are the Hankel functions (see [12]). Then it follows that

U[t, 0]ϕ(x) =
∫

R3
µ2 exp

{ ie

2h̄c
(x − y) · A

}
Z[µ(c2t2 − ‖x − y‖2)1/2]ϕ(y) dy (46b)

solves

ih̄∂ψ(x, t)/∂t =
{

β

√
c2
(

p − e

c
A
)2

+ m2c4

}
ψ(x, t), ψ(x, 0) = ϕ(x). (47)

7. An alternative Dirac, square-root connection

Before Minkowski’s postulate and his geometric interpretation of the special theory, it was not
uncommon to associate the potential energy with the mass of the system. Since that time, it
has been assumed that the potential energy should always be treated as the fourth component
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of a 4-vector. This postulate has only been fruitful in the one-particle case (for both classical
and quantum theories). It was first noted by Pryce [16] that, in the many-particle case, the
canonical centre-of-mass vector is not the fourth component of a 4-vector so that a geometric
interpretation is highly problematic. This is the major reason that there is not a (satisfactory)
relativistic classical or quantum many-particle theory. A detailed review of the problems may
be found in [17]. At the quantum level, Feynman’s path integral formulation of quantum
mechanics and his time-ordered operator formulation of quantum electrodynamics challenge
Minkowski’s geometric interpretation of the role for time. For a rigorous development of both
these approaches, see [18, 19].

Returning to equation (1), when the mass is constant it was shown by Case [20] that a
Foldy–Wouthuysen [21] transformation

(
U−1

FWHsUFW = HD
)

may be constructed for particles
of spins 0 and 1, then Pursey [22] showed that a transformation D exists for particles of
arbitrary spin to map (1) into (we focus on the spin 1/2 case)

D[�] = HD� =
{
cα ·

(
p − e

c
A
)

+ mc2β
}

�. (48)

In this section, we show that, when we give up the Minkowski postulate, there is another
possible relationship between the square-root and Dirac equations that also has a certain
appeal.

First, we note that minimal coupling may also be introduced into the interacting Dirac
operator via

[
mc2β + V = β(mc2 + βV ), π = (

p − e
c
A
)]

D[�] = {cα · π + β(mc2 + βV )}�. (49)

If we treat the potential energy as a part of the mass term, then we can write equation (49) in
the form (see [23], p 329)

{E − cα · π − β(mc2 + βV )}� = 0. (50)

Now, multiply on the left by E + cα · π + β(mc2 + βV ), do the standard computations using
eα · [EA − AE] = ieh̄α · [∂A/c∂t], cβα · [βV p − pβV ] = ieh̄cα · ∇ϕ and get{
E2 − c2π2 + eh̄cΣ · B + ieh̄cα · E + ih̄

∂V

∂t

+ 2ih̄cα · ∇V − 2cV α · p − (mc2 + βV )2

}
� = 0, (51)

where V = eϕ and E = −∂A/c∂t − ∇ϕ is the electric field. The 2ieh̄cα · ∇ϕ term occurs
because we made ϕ a part of the mass, which led to a sign change. Thus, this approach does
not quite lead to an electric dipole moment as in the standard method. The Klein–Gordon
(type) equation related to (50) (with the same eigenfunctions) follows from (51)

−h̄2 ∂2�

∂t2
=
{
c2π2 + 2cV α · p − eh̄cΣ · B − ieh̄cα · E − ih̄

∂V

∂t

− 2ih̄cα · ∇V + (mc2 + βV )2

}
�. (52)

For comparison, from Schiff [23] (equations (42.9), p 320 and (43.25), p 329) we have (V =
eϕ, ∂ϕ/∂t = 0)

−h̄2 ∂2�

∂t2
− 2ih̄cV

∂�

∂t
=
{
c2π2 − eh̄cΣ · B − ieh̄cα · E + ih̄

∂V

∂t
+ m2c4 − V 2

}
Ψ.

Returning to (51), we see that the solutions of the equation

E� =
{
β
√

c2π2 + 2cV α · p − eh̄cΣ · B − ieh̄cα · E − ih̄ ∂V

∂t
− 2ih̄cα · ∇V + (mc2 + βV )2

}
�

(53)
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will also be the solutions of (52). Note that equation (53) is not a diagonalized representation.
However, it is an exact representation, which can retain the same eigenfunctions and
eigenvalues as the Dirac equation. Thus, we have another analytic representation for the
Dirac equation, which need not be a Foldy–Wouthuysen transformation [44].

When A is time independent and V = 0, we obtain a (diagonalized) form similar to
one derived in [24] via the Foldy–Wouthuysen transformation of [21]. In this situation,
we obtain the most general (exact) representation that includes all time-independent vector
potentials. (It is clear that, as expected, we can never obtain a diagonalized representation for
nonzero V .)

While completing the final draft of this paper, we discovered a very interesting publication
by Silenko [43] that includes a fairly complete review of the Foldy–Wouthuysen and other
transformation methods, which seek to obtain consistent approximations to the Dirac equation
in the relativistic and nonrelativistic cases. In the course of his work, Silenko shows that in
many cases, the Foldy–Wouthuysen transformation is the identity operator. Our work suggests
(but does not prove) that this may always be possible.

In order to see how equation (53) relates to the Schrödinger equation, rewrite it as{
βmc2

√
1 + β 2V

mc2 + V 2

m2c4 + cπ2+2V α · p
m2c3 − eh̄Σ · B

m2c3 − ieh̄α · E
m2c3 − ih̄

m2c4
∂V
∂t

− 2ih̄α·∇V
m2c4

}
�.

Expand the above equation to first order to get

S[�] ∼=
{
βmc2 + V + βV 2

2mc2 + βπ2

2m
+ V α · p

mc2 − eh̄βΣ · B
2mc

− ieh̄βα · E
2mc

− ih̄β∂V

mc2∂t
− ih̄

mc
βα · ∇V

}
�.

(54)

It follows that, dropping terms of order (v/c)2, the corresponding (positive energy) Schrödinger
equation is (see [23], p 330, last paragraph)

ih̄
∂�

∂t
=
{

π2

2m
+ V + mc2 − eh̄

2mc
Σ · B + V 2/2mc2

}
�. (55)

7.1. Perturbations

It is clear that, in general, many problems of interest will have time-dependent vector potentials.
In this section, we develop the basics of a perturbation theory for the square-root operator.
To begin, we assume that the vector potential can be decomposed as A = A1 + A2, where
A1 is the potential for a constant magnetic field, while A2 may have arbitrary space and time
dependence. We first write [p − (e/c)A]2 as(

p − e

c
A1

)2
−
(

p − e

c
A1

)
· A2 − A2 ·

(
p − e

c
A1

)
+ |A2|2.

Using this result, write equation (53) as β
√

c2[p − (e/c)A1]2 + m2c4 − eh̄cΣ · B1 + F , where

F = (mc2 + βV )2 − m2c4 + |A2|2 −
(

p − e

c
A1

)
· A2 + 2cV α · p

− A2 ·
(

p − e

c
A1

)
− eh̄cΣ · B2 − ieh̄cα · E − ih̄

∂V

∂t
− 2ih̄cα · ∇V.

We now assume that the operator G = c2[p − (e/c)A1]2 + m2c4 − eh̄cΣ · B1 has the property
that G−1/2F is bounded. When this condition is satisfied, we can expand (53) as

β
√

G + F = β
√

G
√

I + G−1F = β
√

G
∑∞

n=0

(
1/2
n

)
(G−1F)n

= β

{√
G +

1

2
G−1/2F − 1

8
G−1/2FG−1F + · · ·

}
. (56)



2492 T L Gill and W W Zachary

The assumption insures that equation (56) converges rapidly so that the first few terms give a
good approximation. Note that all the terms are computable so that equation (56) has more
than theoretical value.

8. Conclusion

In this paper, we have shown that the square-root operator has a well-defined analytic
representation, which is uniquely determined by the Green’s function for the corresponding
Schrödinger equation for all values of the spin (our focus was on spin 1/2). We have constructed
the exact solution and have explored a number of simple cases in order to obtain some insight
into the physical meaning of the operator. In the free case, the operator has a representation
as a nonlocal composite of three singularities. To our knowledge, this is the first example of a
physically relevant operator with these properties. In the standard interpretation, the particle
component has two negative parts and one (hard core) positive part, while the antiparticle
component has two positive parts and one (hard core) negative part. This effect is confined
within a Compton wavelength such that, at the point of singularity, they cancel each other
providing a finite result. Furthermore, the operator looks (almost) like the identity outside a
Compton wavelength, but has a residual instantaneous connection with all other particles in
the universe at each point in time. We thus suggest that this operator represents the inside of
an extended object.

In addition to the free particle, we have considered the case of a constant vector potential
and a constant magnetic field. They both reveal the complex nature of the internal dynamics
when interaction is turned on. When the vector potential is constant but nonzero, we get a
multiplicative exponential factor.

The next case explored corresponds to a constant magnetic field. In this case, we get two
extra terms and a related multiplicative exponential factor. The nonsingular term has both a
real and imaginary part. However, the singular term (diverges like 1/r) is purely imaginary
and the effective mass becomes complex. The physical picture that emerges is that, in addition
to the confined singularities and the additional attractive (repulsive) term, the effective mass
of the composite acquires an oscillatory behaviour.

We also constructed the complete propagator for the constant vector potential case. Then
we studied an alternative relationship between the Dirac equation (with minimal coupling) and
the square-root equation that is much closer than the conventional one. This was accomplished
by considering the scalar potential as a part of the mass. This allowed us to derive a new
Klein–Gordon equation and a new square-root equation that both have related eigenvalues and
the same eigenfunctions as the Dirac equation.

In the last section, we developed a perturbation formula which allows us to consider
suitable spacetime-dependent vector and scalar potentials. We have included an appendix
with a brief review of the theory of the semigroups of operators relevant for the construction
of our analytic representation of the square-root operator.

There are a number of issues that we have not discussed in this paper. Many writers
have used the square-root operator to develop constituent quark models. These models are
very accurate in the description of a large part of meson and baryon properties (see [25] and
references therein). The work of Sucher [26] suggests that, with minimal coupling, the square-
root operator may not be Lorentz invariant, while Smith [27] suggests that the equation has
very limited gauge properties. These are very complicated problems that require additional
study and analysis.

If our conclusion is correct that the square-root operator represents the inside of a particle,
then the question of Lorentz invariance may be mute and all assumptions would require careful
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reconsideration. First, recall that the special theory of relativity has serious problems when
applied to nonpoint particles (extended objects). Furthermore, a number of writers have
suggested the possible breakdown of Lorentz invariance inside extended (nonlocal) objects.
Indeed, sometime ago, Santilli [28–31] called for detailed experimental study to determine
if the special theory was still valid inside a hadron and/or hot hyper-dense matter such as a
star. (Recall that electrons can travel faster than the speed of light in water and have different
effective mass properties inside condensed matter.) Coleman and Glashow (see [32] and
references therein) have identified possible terms within the perturbative framework of the
standard model, which would allow small departures from Lorentz invariance. Their interest
is in identifying phenomena which could be relevant to both cosmic and neutrino physics. At
the cosmic level their hope is to undo the GZK cutoff for high-energy cosmic rays; while at
the neutrino level, the hope is to identify novel types of neutrino oscillations. The varying
speed of light theory (VSL) of Moffat [33] provides an elegant solution to a number of
cosmological problems: the horizon, flatness and lambda problems of big-bang cosmology
(see also [34]). In conclusion, we note that the strongest experimental (and phenomenological)
analysis suggesting deviations from Lorentz symmetry inside hadrons is that due to Arestov
et al [35].

Finally, in addition to the obvious possibility that the square-root operator may be used to
represent the inside of hadrons, it is also possible that the residual attractive (particle) part may
be the long-sought cause for the gravitational interaction in matter. If this view is correct, then
we would expect matter and antimatter to be gravitationally attractive among themselves and
gravitationally repulsive to each other. This would make physical sense if we seriously take
the interpretation of antimatter as matter with its time reversed (as opposed to hole theory).
Such a hypothesis is within current experimental capability. Indeed, Santilli [31] has also
suggested this possibility and he has identified relevant test experiments. It should be noted
that, in the quoted references, Santilli avoided the standard (historical) objections to antigravity
by introducing a new class of numbers with a negative unit and called them isoduals of the
standard number system. It is easy to show that the antimatter component of our analysis can
easily be reinterpreted via Santilli’s isodual theory without any change in the results. In this
sense, our analysis constitutes a possible theoretical confirmation of the axiomatic prediction
of antigravity for matter–antimatter systems as suggested above.

Appendix. Semigroups and fractional powers of operators

This appendix provides a brief summary of the theory of strongly continuous semigroups of
linear operators, which is used to explain the general theory of fractional powers of operators.
The definitions and basic results are recorded here for reference so as to make the paper self-
contained. Hille and Phillips [36], and Yosida [37] are the general references on semigroups
(see also [38–40]). Butzer and Berens [41] have a very nice (short) introduction to operator
semigroups. Tanabe [42] has a good section on fractional powers, but one should also consult
Yosida [37].

Definition A.1. Let T(t), t � 0, be a family of bounded linear operators on a Banach space
B. This family is called a strongly continuous semigroup of operators (or a C0-semigroup) if
the following conditions are satisfied:

(1) T(t + s) = T(t)T(s) = T(s)T(t),∀t, s � 0, T(0) = I,
(2) limt→s T(t)ϕ = T(s)ϕ,∀ϕ ∈ B.

If the family T(t) is defined for t ∈ (−∞,∞), then it is called a C0-group and T(−t) =
T−1(t). By further restriction, we obtain the (well-known) definition of a unitary group.
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Theorem A.2. Let T(t), t � 0, be a C0-semigroup and let D = {ϕ| limh→0 h−1[T(h) − I]
ϕexists}. Define Aϕ = limh→0 h−1[T(h) − I]ϕ forϕ ∈ D; then,

(1) D is dense in B,
(2) ϕ ∈ D ⇒ T(t)ϕ ∈ D, t � 0,

(3)
d

dt
[T(t)ϕ] = AT(t)ϕ = T(t)Aϕ, ∀ϕ ∈ D. (A.1)

Proof. (see [42], p 51). Thus, it follows that ψ(x, t) = T(t)ϕ(x) solves the initial value
problem:

d

dt
ψ(x, t) = Aψ(x, t), ψ(x, 0) = ϕ(x). (A.2)

The operator A is called the generator of the semigroup T(t), and we can write

T(t)ϕ(x) = exp{tA}ϕ(x). �

Theorem A.3. The generator A, of the semigroup {T(t), t � 0}, is a closed linear operator.
If ‖T(t)‖ � M exp{βt}, for fixed constants M and β, then the half-plane {λ|Re(λ) > β} is
contained in the resolvent set ρ(A) and, for each such λ, we have ([42], p 55)

(λI − A)−1ϕ =
∫ ∞

0
e−λtT(t)ϕ dt = R(λ,A). (A.3)

R(λ,A) is called the resolvent operator of A and

‖R(λ,A)‖ � M[Re(λ) − β]−1. (A.4)

Definition A.4. Suppose that the operator A generates a C0-semigroup on B, and there exists
a constant M such that (see [39], p 101, theorem 4.6)

‖R(r + is, A)‖ � M

|s| , ∀r > 0 and 0 
= s ∈ R1. (A.5)

Let Σ represent the above region in the complex plane, then the family {T(z), z ∈ Σ} is called
a holomorphic C0-semigroup on B. (See [39] for details.)

Introduce the function ft,α(λ) defined by ([37], p 259)

ft,α(λ) = 1

2πi

∫ σ+i∞

σ−i∞
exp{zλ − tzα} dz, λ � 0, ft,α(λ) = 0, λ < 0, (A.6)

where t > 0, 0 < α < 1 and σ > 0, and the branch of zα is taken so that Re(zα) > 0
when Re(z) > 0. The branch is a single-valued function in the complex plane cut along the
negative real axis. The convergence of the integral (A.6) is insured by the factor exp{−tzα}.
Define Tα(t) by Tα(0)ϕ = ϕ and for t > 0

Tα(t)ϕ =
∫ ∞

0
ft,α(s)T(s)ϕ ds, (A.7)

where {T(t), t � 0} is a C0-semigroup of operators on B.

Theorem A.5. Suppose that the operator A generates a C0-semigroup {T(t), t � 0} on B.
Then,

(1) the family {Tα(t), t � 0} is a holomorphic C0-semigroup on B,
(2) the operatorAα, the generator of {Tα(t), t � 0}, is defined by Aαϕ = −(−A)αϕ, and

Aαϕ = sin απ

π

∫ ∞

0
λα−1R(λ,A)[−Aϕ] dλ. (A.8)
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Proof (see [37], p 260). For our work, we are only interested in the case when α = 1/2.
Let us deform the path of integration in equation (A.6) into a union of two paths, r e−iθ , when
−r ∈ (−∞, 0) and r eiθ , when r ∈ (0,∞), where π/2 � θ � π. In particular, we need
θ = π. This case leads to

ft,1/2(s) = 1

π

∫ ∞

0
exp{−sr} sin{tr1/2} dr. (A.9)

Using a table of Laplace transforms, we have

ft,1/2(s) = ts−3/2

√
4π

exp

{
− t2

4s

}
. (A.10)
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